HIGH PERFORMANCE MANUFACTURING GROUP ### HPM Group Identified Priorities The purpose of the High Performance Manufacturing Strategic Focus Group is to: - Establish an active HPM network amongst Manager and Shop Floor Personnel - 2. Share Continuous Improvement Best Practices - 3. Establish interactive and productive plant tours - 4. Develop a HPM Tool Kit ### HPM Group Networking Event The HPM Group met for a Lean - Informal Networking event at the Cat & Fiddle in Cobourg on November 18th, 2015. #### **Action Items Included:** - Guest Speaker, Tara McDonough, who provided an overview of Lead to inform both new and experienced lean practitioners. - 2. Established an active HPM LinkedIn networking group. - 3. Development of a framework for HPM Group Plant tour/site visits to collectively resolve an identified onsite issue and share best practices # HPM Group 1st Workshop – CpK Interior Products CpK Interior Products hosted the 1st HPM Workshop on May 18, 2016. The workshop was used to focus on: - The company's continuous improvement journey - The sharing of best practices - Resolution of a problem/loss in the Plant The half day workshop consisted of employees from Chem-Ecol Custom Plastics Sabic Untrack ESCO Canadian Resin Recovery # Objectives - Understand the foundation of CpK Interior Products' lean system (World Class Manufacturing) - 2. Review the Injection 11 process for their Dodge and Chrysler Instrument Panel Retainers. - 3. Identify improvements on the line to reduce the time it takes to process a part and to reduce the labour requirements | | Start | End | Duration | Activity | |----------------|-------|-------|----------|--| | | 8:00 | 8:20 | 0:20 | Safety and Cpk Interior Products Plant Overview | | | 8:20 | 8:35 | 0:15 | World Class Manufacturing (WCM) Overview | | | 8:35 | 8:45 | 0:10 | 7 Steps of Focused Improvement | | | 8:45 | 9:05 | 0:20 | Injection 11 - Floor Exercise | | 2016 | 9:05 | 9:15 | 0:10 | 5W1H Exercise | | May 18th, 2016 | 9:15 | 10:15 | 1:00 | 3M Analysis Training and House Building Exercise | | May | 10:15 | 10:25 | 0:10 | Step 2 of a Kaizen | | | 10:25 | 10:35 | 0:10 | Step 3 of a Kaizen | | | 10:35 | 11:30 | 0:55 | Step 4 of a Kaizen | | | 11:30 | 11:45 | 0:15 | Step 5 -7 of a Kaizen | | | 11:45 | 12:00 | 0:15 | Wrap Up | | | 12:00 | 12:45 | 0:45 | Lunch and Open Discussion | # 7 Steps of Focused Improvement ## Why Are We Here? ## Building a Project Team # As a Project Lead why would you need to build a Team to attack your project? - 1. Bring knowledge to the project - 2. Bring experience to the project - 3. Facilitate Data collection (Generally a good Team Leader function) - 4. Roles and responsibilities in the facility - 5. Spreading of knowledge - 6. Development ## Building a Project Team 1. Make a list of Tools/Skills/Knowledge you need to attack the problem 2. Working with People Development pillar assess your abilities/knowledge of the required tools. We do this using radar charts. Working with People Development pillar understand if the gaps present are in skill (gained through application) or in knowledge (gained through self study or formal training) 4. Develop training plan (if required) and begin to select Team Members. # Training the Team to Increase Knowledge # Importance of Defining the Problem #### Problem vs. Phenomenon Problem: A deviation or gap between what is observed and what is desired. Phenomenon: An abnormal condition producing the problem When you go home tonight you find your window broken. You walk into the house and find a baseball in the middle of the floor. What is the problem? What is the phenomenon? What is the root cause? ### Importance of Defining the Problem njection 11 has several non-value added activities taking place on the secondary stations once the part comes off the press. Time is being waster walking, reworking, and assembling components in a non-optimal manner. The problem occurs when running the LX and LD retainers using two | | | | | | | | enty raes | | | | | | | |-----------------|--|----------------|----------------|--------------------------|-------|---------|--------------|---------|---------------------|------------------|------------------|-------------------|----------------| | Tracero No | mer televition LX fletelines | | Met Open | ettens Theory | 450 | mto | | | | Dotty Brantone | rat: | 314 | ero. | | Personnel to | y R. Makern | | | Total Timers | 1.400 | mate: | | | | Senar/Streetch ! | 1901: | 5.11 | 115 | | Date | 12/1/20 | | | He | | | election 11 | | | Dort N | | Betel | | | Bute
Suprovi | | | | Progr | | | ejection 11 | | | Mar Dula | | Actain | | | 2000100 | | | 1 | Fring | | | | | | No. of Persons | an part many | 417 | | | Shatten | 40 10 | jentinen 33 | | | | | | | | | | | | | Megal | Panero Description | rqoy. | WO. | | Time | Manuel | Auto
Lime | tutal | Time | Commission | rotal
Cemelty | C | neds. | | - Indi | rettan | - 1 | VA. | | | | 1.400 | 2.400 | 2.400 | 140 | 212.00 | | | | - | | | | | | | _ | | | _ | | | | | 4 | | | | | | | | | | | | | | | | | | 40.00 | Syste Lone | | _ | 1.44 | 20 | mun | | | | | | | | | Operators | Oyste Time | 0.000 | 0.000 | | | | | | | | | $\overline{}$ | Work Station Volum | | | | | | - 25 | , | sects. | | | | | | | | | Staffling rold | | | | 0.00 | | Če | No. of Con- | A 1 | gase/soves | | | | | | | | | | | | | | | | wo | Make | WATE | | Date Time | _ | Treat | | Yotal | Comments (Sing | ic Point Root | | 35+p II | Process Description | 1319 | SAMPAGONA | m abo | Time | Managed | Lime. | Tested | There | Carminiative | Copposity | France | r) | | | move part from Downton to 4 | | | | | lime | lime | | | 1 | 1 | 1 | | | 3 048 | | | 100.0 | | | 9.50 | j. | 0.200 | 0.100 | 0.100 | I | WO Li | Landson I | | 2 014 | torn part from company | | 200 | | | 9,100 | | 0.200 | 9.100 | | 4571.43 | 99.00 | | | Taxon | est 1 | | | | | 0.00 | | | 0.00 | 0.20 | BEST 11 | OC WINE | estes | | | part lete fixture | 2. | CVR | | | 11,199 | - | 9.000 | 10,1000 | | 2929.06 | 2000 et 50 | erout. | | S from | tall 2 plates | | V3 | | | 0.100 | | 0.560 | 0.160 | | | | | | | de Machine | 1 | 5300 | | | | 4 | 0.090 | | | | With La | | | / Me | ore to Moreton | - 1 | 098 | | | 51,006 | | 0.090 | SLUWU | 9.724 | | W.C DA | | | | on pattern Heles | , | - | | | 0.000 | | 0.065 | | | | 9075 1.4 | | | | esten in wie rack
tein nert from A. S. door enhie | , | | | | 0 EM | 4 | OLESWON | D. ETHE | (1.864 | | W12 - 1/4 | grand. | | | tein pert frem A. 5 door eable
tear | | 0.99 | | | 0.110 | | 0.110 | 0.110 | 0.764 | | WO L | | | | alten and run cycle | - 1 | 21/2 | _ | | 0.100 | | 9,260 | | | | W-0- LB | | | 12 | and the remedie | | | | | 0.20 | | 0.200 | | 1 | 1 | 110-14 | | | | | | | | | | 1.0 | | min | 1 | | | | | | | | Auto | Cycle Time | 0.000 | 1.104 | | | min | | | | | | | work stateen volun | 4 : 202000 040 | | eyere time | 0.600 | 1.104 | 42 | | NO.56 | | | | | | | Walt State of Colors | a capacity par | Staffing re o | | | | 0.77 | | Ce | | | | | | | | | | | | | | | | 1 | | | | | 219101 | TA ARVO | nor Assembly | | | | | | | | | | | | | | | | wo | | Wats | | Cose Time | | Total | 1 | Tisted | Commercial Street | he Parket Base | | Step# | Process Description | Gtv | VACTORISMO | Marine | line | Managel | Auto | Tested | Biomer | Commissions | Semmite | Simo | | | _ | | _ | | _ | | time | time | | _ | | | EFFOREEDS F | | | 2 Par | Affirm Index Balance, a Lange & or | state 2 | 21/0 | | | | | | | | | | | | 2 (100) | are Land Lone With | 1 | | _ | | 0.336 | | 9.306 | 0.000 | 0.336 | 1200.00 | 11000100-000 | | | | ce and assemble nuts to plan | | 701 | | | 0.750 | | 9.750 | 0.79 | | 857.55 | | | | | | | | | - | 2.74 | _ | 2743 | 10,741 | 1.000 | 200.00 | APPROVABLE I | Affico II no | | 4 195 | ate | 3 | | | | 6.672 | al . | 0.072 | 0.072 | | 0000.00 | 7,000 | | | | of second attitudes to the Control | , | 911 | | | 0.050 | 3 | 0.084 | 0.000 | 1.038 | 7500.00 | | - | | | | | | | | | | | | | | | | | 2 1111 | 7 | | | | Costs Vissa | | | 0.00 | 22 | | | | | | | 7 | · · · · · · | | | Cycle Time | 0.700 | 1.01 | 0.00 | 16 | min | _ | | | | | 7 | work states or volum | 4 505/7: 74/ | Operators | Cycle Time
Cycle Line | 0.000 | 1.416 | | 16 | min
min
vinda | | | | | ### Root Cause Analysis and Identification of Countermeasures | Problem
Description | Potential
Phenomena | 1st Why | Check | 2 nd Why | Check | 3 rd Why | Check | 4 th Why | Check | 5th Why | Check | Countermeasure | |---|---|--|-------|---|-------|---|-------|---------------------|-------|---------|-------|---| | Injection 11 has several mon-value added and activities activities activities activities taking place on the secondary stations once the part Time is bring wasted the problem wasted wasted on the secondary stations once the part Time is bring wasted wasted to several more activities and assembling components in a non-volume or the problem occurs when running the LX and LD retained to components to components to components to components to complete the taken to complete the taken taken the taken the | Conveyor
too far away
resulting in
8-10
unnecessary
steps to be
taken | Length of
conveyor
is shorter
than
distance
to
degator | NOK | Only
conveyor
available at
the time | NOK | | | | | | | Extend conveyor
to reach degator
or place a roller
table to feed
part to degator | | | Sprue
removal by
hand | Degator
doesn't
currently
remove
one of
sprues | NOK | Degator
did not
have the
capacity
to cut
the
sprue in
that
area | NOK | Limited
working
space
for
cutter
to fit
into
degator
at the
right
angle | NOK | | | | | Install a degator
on the end of
arm tooling to
cut the sprue
off, prior to the
part being
placed on the
conveyor | | Problem | Potential | 1st Why | Check | 2 nd Why | Check | 3rd Why | Check | 4th Why | Check | 5th Why | Check | Countermeasure | |---|--------------------------------|---|-------|---|-------|--|-------|---|-------|---------|-------|--| | Description Injection 11 has several being wasted walking had walking had has several has being wasted walking had has being wasted walking had has being | Distance to rivet machine | Rivet
operation is
on a
separate
machine
that
requires the
part to be
walked over
to | NOK | Rivet gun is
an
autonomo-
us
operation
that runs
on its own
secondary
machine | NOK | Rivet
operation
was
designed
this way | NOK | | | , | | Combine the A/B
Door Assembly and
the Rivet operation in
order to prevent
unnecessary walking
and handling of the
part. Or move rivet
offline | | | Nut
tightening
operation | Hand
tightening | NOK | Used in
order to
begin
thread | NOK | No other
current
method in
place to
begin
thread | NOK | | | | | Incorporate a
magnetic head on the
torque gun to allow
for proper positioning
of nuts | | | | Speed of torque gun | NOK | Torque of
each nut
takes too
long | NOK | Speed of
gun is too
slow | NOK | Default
speed in
place for
gun | NOK | | | Increase the spindle
speed of the torque
gun to complete the
operation quicker | | | | Individual
gun being
used for
torque | NOK | Gun
required to
completely
tighten the
nut to the
bolt | NOK | The next
nut can't
be
completed
until the
previous
nut is
tightened | NOK | Each nut
requires
appropriate
torque | NOK | | | Develop a 6 gun nut
runner with a
balancer to allow all 6
nuts to be torqued at
once | | Problem
Description | Potential
Phenomena | 1 st Why | Check | 2 nd Why | Check | 3 rd Why | Check | 4th
Wh
y | Check | 5th Why | Check | Countermeasure | |---|---|---|-------|---|-------|--|-------|----------------|-------|---------|-------|--| | Injection 11 has several man-value man-value man-value activities taking place on the secondary stations once the part comes off the press. Time is being wasted wasted wasted assembling components in a non-optimal manner. The problem occurs when running the LX and LX secondary to complete the LX and LX secondary to complete the tasks | Rotation of
part in
fixture | Part
rotated
that B-
side is up | NOK | B-side
required
to face
up so
that bolts
of A/B
door are
exposed | NOK | Nuts need to
be
assembled to
bolts to lock
door in place | NOK | | | | | Modify fixture
to prevent
rotation of part | | | Trim
excess
flash | Flash left
on
windshiel
d edge
that
must be
removed | NOK | Creates
potential
build
issues if
flash
remain | NOK | | | | | | | Review
processing to
reduce the
amount of flash
along the
windshield edge | | | Retrieval
of 6 nuts
for
assembly | Nuts are
picked
out of a
bin | NOK | 6 nuts
required
for Air
Bag Door
assembly | NOK | Design
requirement | NOK | | | | | Create and auto-
feeder to
dispense the 6
nuts required
for assembly | | Problem
Description | Potential
Phenomena | 1 st Why | Check | 2 nd Why | Check | 3 rd Why | Check | 4th Why | Check | 5th Why | Check | Countermeasure | |---|--|--|-------|---|-------|--|-------|---------|-------|---------|-------|--| | Injection 11 has several non-value added activities taking place on the secondary stations once the part comes off the press. Time is being wasted walking, and assermbling components in a non- optimal manner. The problem occurs when running the LX and LD retainers using two operators to compelete the tasks | Rivet
sequence
performs
one rivet
at a time
and is slow | Rivet
required
to ensure
air bag
door is
fastened
to the
retainer | NOK | Rivet
operati-
on
speed is
set to a
default
rate | NOK | | | | | | | Increase the speed of the robot to maximize the throughout of the rivet operation | | | Distance to
WIP rack is
long | Rack is
placed a
fair
distance
away for
operator
to hang
part | NOK | Rack
was
placed
in
current
location
to allow
for
forklift
accessibi
-lity | NOK | Forklift
is used
to
transpo
rt rack
to
wareho
use | NOK | | | | | Move the WIP rack closer to the rivet station to reduce walking distance and work with LCS to replace forklift with a tugger for rack transportation | 13 Root Causes Identified 11 Potential Countermeasures Being Considered # EHS – Environmental/Health & Safety HR – Human Resources